BIBLIOTECA HNO. HILDEBERTO JUAN

Imagen de cubierta local
Imagen de cubierta local

Data sciences for business / Foster Provost, Tom Fawcett.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Data science / businessDetalles de publicación: Sebastopol: O'Reilly Media, 2013.Descripción: 386 páginas: ilustracionesISBN:
  • 9781449361327
Tema(s): Clasificación CDD:
  • 23 006.312 P969d
Contenidos parciales:
1. Introduction: Data-Analytic Thinking.--2. Business Problems anda Data Science Solutions.--3. Introduction to Predictive Modeling: From Correlation to Supervised Segmentation.-- 4. Fitting and Model ti Data.-- 5. Overfitting and Its Avoidance.-- 6. Similarity, Neighbors, and Clusters.--7. Decision Analytic Thinking I: What Is a Good Model?.-- 8. Visualizing Model Performance.-- 9. Evidence and Probabilities.-- 10. Representing and Mining Text.-- 11. Decision Analytic Thinking II: Toward Analytical Engineering.-- 12.Other Data Science Task and Techniques.-- 13. Data Science and Business Strategy.-- 14. Conclusion.
Resumen: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowlegde and business value from the data you collect. By learning data science principles, you will understand the many data mining techniques in use today.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura topográfica Copia número Estado Fecha de vencimiento Código de barras
Libros Libros Biblioteca Central CIENCIAS PURAS 006.312 P969d (Navegar estantería(Abre debajo)) Ej.1 Disponible B0587

Incluye índice de materias.

1. Introduction: Data-Analytic Thinking.--2. Business Problems anda Data Science Solutions.--3. Introduction to Predictive Modeling: From Correlation to Supervised Segmentation.-- 4. Fitting and Model ti Data.-- 5. Overfitting and Its Avoidance.-- 6. Similarity, Neighbors, and Clusters.--7. Decision Analytic Thinking I: What Is a Good Model?.-- 8. Visualizing Model Performance.-- 9. Evidence and Probabilities.-- 10. Representing and Mining Text.-- 11. Decision Analytic Thinking II: Toward Analytical Engineering.-- 12.Other Data Science Task and Techniques.-- 13. Data Science and Business Strategy.-- 14. Conclusion.

This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowlegde and business value from the data you collect. By learning data science principles, you will understand the many data mining techniques in use today.

No hay comentarios en este titulo.

para colocar un comentario.

Haga clic en una imagen para verla en el visor de imágenes

Imagen de cubierta local